If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11r^2-13=4r
We move all terms to the left:
11r^2-13-(4r)=0
a = 11; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·11·(-13)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14\sqrt{3}}{2*11}=\frac{4-14\sqrt{3}}{22} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14\sqrt{3}}{2*11}=\frac{4+14\sqrt{3}}{22} $
| 2(1=m)=16 | | .003x-12=18.6 | | 3x-17+2x+3+155=180 | | 3x-17+2x+3-+155=180 | | 12x-36=28x+76 | | 36=2/3(x-30) | | 3x-17-2x+3-+155=180 | | 1.2n=0.68=5 | | 10a/17a=9/13 | | 4(b-6)=2b+4 | | 11x+11+110=180 | | 2x+3+3x-17+155=180 | | v+5/6=-1/5 | | .4x-4=20 | | -3(-2x-3)=-3 | | 2x+3-3x-17+155=180 | | y2−12y+136=0 | | 45=3(x-20) | | 1.4+6=3.4x-4 | | 180=-3(4-8p | | 5-35b=-65 | | .4x-4=30 | | y2−12y+36=−100 | | -27=1.8c | | v+(5/6)=-(1/5) | | 3y-8y=22 | | y=5*8+39 | | 3x+2+82=180 | | 4x-10=32 | | 5+n/6=8 | | 71=120-(15-n+7.50) | | .9x+12=30 |